Esercizi sul moto di un proiettile: equazioni per il moto orizzontale e verticale

Si propongono esercizi sul moto di un proiettile con relative soluzioni e spiegazioni
Il moto di un proiettile è un esempio di moto curvilineo uniformemente accelerato in cui un punto materiale è lanciato in aria obliquamente.

Il moto del proiettile è caratterizzato da un’accelerazione costante che, nello specifico, è l’accelerazione di gravità che è diretta verso il basso.
Poiché è un moto uniformemente accelerato valgono le seguenti equazioni che si utilizzano negli esercizi sul moto del proiettile:

x= v0t + ½ at2
v = v0 +at
v2= v02 + 2 ax

Le equazioni indicate sono valide per il movimento in una dimensione, ma un proiettile si muove sia in direzione orizzontale che verticale. Poiché le due componenti sono indipendenti l’una dall’altra, sono necessarie due insiemi di equazioni separati: uno per il movimento orizzontale e uno per il suo movimento verticale. Pertanto, le tre equazioni sono trasformate in due serie di tre equazioni.

Equazioni per il moto orizzontale

Per le componenti orizzontali del moto, le equazioni sono:

x= v0xt + ½ ax t2
v = v0x +ax t
v2= v0x2 + 2 ax x

Tuttavia poiché la componente dell’accelerazione sull’asse delle x è pari a zero si ha:

x= v0xt
v = v0x
v2= v0x2

Equazioni per il moto verticale

Per le componenti verticali del moto, le equazioni, considerando che ay vale – g e v0y = 0 sono:

y= – ½ g t2
v = -g t
v2= – 2 gx

Esercizi sul moto del proiettile

Calcolo della velocità iniziale

Un corpo è lanciato orizzontalmente da una collina alta 22.0 metri e atterra a una distanza di 35.0 metri dal bordo della collina. Determinare la velocità orizzontale iniziale del corpo

Dati:
y = – 22.0 m
x = 35.0 m
ay = – g = – 9.8 m/s2

Per calcolare la velocità si deve calcolare il tempo impiegato

y = – ½ g t2
Sostituendo i valori noti si ha: – 22.0 m = – ½ (9.8 t2) = – 4.9 t2

Da cui moltiplicando per -1 ambo i membri e dividendo per 4.9 si ha:
22.0/4.90 = 4.49 = t2
t = √4.49 = 2.12 s

Conoscendo il tempo si usa l’equazione x= v0xt
35.0 =  v0x  · 2.12
Da cui v0x = 16.5 m/s

Calcolo della distanza orizzontale

Un corpo lascia un tavolo alto 0.60 metri con una velocità orizzontale iniziale di 2.4 m/s. Calcolare  la distanza orizzontale tra il bordo del tavolo e il punto di atterraggio della palla.

Come nel caso precedente si calcola il tempo dall’equazione:
y = – ½ g t2

da cui: – 0.60 m = – ½  (9.8 t2) = – 4.9 t2
0.122 = t2
t = √0.122 = 0.350 s

Per calcolare la distanza orizzontale si usa l’equazione x= v0xt
Da cui x = 2.4 m/s · 0.350 s = 0.84 m

 

ARGOMENTI

GLI ULTIMI ARGOMENTI

TI POTREBBE INTERESSARE

Esercizi sulla legge di Ohm

Gli esercizi sulla legge di Ohm che sono proposti in genere richiedono il calcolo di una delle grandezze note le altre due. La legge di...

Q test: formula, test

Il Q test o test di Dixon è un modo per trovare valori anomali in set di dati molto piccoli, normalmente distribuiti da 3...

Forze non conservative: teorema dell’energia cinetica

Le forze non conservative dette dissipative sono quelle forze per le quali il lavoro fatto durante lo spostamento dipende dal percorso seguito. Esempi di forze...