Legge di Snell: applicazione, esercizi

Secondo la legge di Snell detta anche legge di Descartes si può calcolare l’ampiezza dell’angolo di rifrazione dalla relazione:
n2 · sen θ2 =  n1 · sen θ1

ovvero:
sen θ2 =  n1 · sen θ1/ n1   (1)
dove θ2 è l’angolo di rifrazione per un raggio di luce che colpisce una superficie piana con un angolo di incidenza θ1 rispetto alla normale

n1 e n2 sono rispettivamente i due indici di rifrazione

applicazioni legge di snellRifrazione

La rifrazione è un tipo di interazione tra radiazione e materia per il quale la direzione di propagazione di un raggio di luce cambia quando attraversa l’interfaccia tra i due mezzi che hanno diversi indici di rifrazione. La luce ha diversa velocità di propagazione in mezzi con diversi indici di rifrazione. Questa variazione di velocità ne influenza la direzione di propagazione. Se n2 > n1 la direzione di propagazione si inclina verso la normale alla superficie di incidenza.

Applicazioni della legge di Snell

A dreamstime 1601578 t5w61h da ChimicamoLa legge di Snell correla quattro variabili e consente la determinazione di una variabile se sono note le altre tre. Conoscendo  l’indice di rifrazione di diversi mezzi da apposite tabelle si può usare la legge per prevedere il percorso della luce in quei mezzi.

La legge di Snell  aiuta a spiegare perché un prisma può piegare la luce in un arcobaleno di colori. Quando la luce entra in un prisma, rallenta e si piega perché l’indice di rifrazione del vetro è diverso dall’indice di rifrazione dell’aria. Ciò fa sì che la luce si divida in diversi colori, con ogni colore che si piega con un’angolazione leggermente diversa.

Esercizi

  • Calcolare l’angolo di rifrazione di una radiazione che passa dall’aria ( n = 1.0003) all’acqua ( n = 1.333) colpendo la superficie dell’acqua con un angolo di 45° rispetto alla normale

Dai dati forniti si ha:

n1 = 1.0003
n2 = 1.333
θ1 = 45°

Applicando la (1) si ha:

sen θ2 =  1.0003 · sen 45°/ 1.333 = 0.531
da cui θ2 =  arcsen 0.531 = 32.0°

  • Una radiazione passa dall’aria ( n = 1.00) e colpisce con un angolo di 45° una lastra di vetro ( n = 1.50). Calcolare l’indice di rifrazione della radiazione dopo che essa ha attraversato la lastra di vetro

In questo caso si deve applicare due volte la legge di Snell

n1 = 1.00
n2 = 1.50
θ1 = 45°

Applicando la (1) si ha:

sen θ2 =  1.00 · sen 45°/ 1.50 = 0.472
da cui θ2 =  arcsen 0.472 = 28.1°

Tenendo conto che la radiazione passa dopo aver attraversato la lastra di vetro all’aria si ha:

n1 = 1.50
n2 = 1.00
θ1 = 28.1°

da cui:
sen θ2 =  1.50 sen 28.1°/1.00 =  0.707
Si può pertanto calcolare θ2
θ2 =  arcsen 0.707 = 45 °

Questo angolo è lo stesso angolo incidente. Quando un fascio di luce passa attraverso una lastra di qualsiasi materiale con spessore uniforme, l’angolo incidente e quello rifratto coincidono.

ARGOMENTI

GLI ULTIMI ARGOMENTI

TI POTREBBE INTERESSARE

Esercizi sulla legge di Ohm

Gli esercizi sulla legge di Ohm che sono proposti in genere richiedono il calcolo di una delle grandezze note le altre due. La legge di...

Q test: formula, test

Il Q test o test di Dixon è un modo per trovare valori anomali in set di dati molto piccoli, normalmente distribuiti da 3...

Forze non conservative: teorema dell’energia cinetica

Le forze non conservative dette dissipative sono quelle forze per le quali il lavoro fatto durante lo spostamento dipende dal percorso seguito. Le forze...