Miscele di sali poco solubili: esercizi

Le miscele di sali poco solubili si possono formare in una reazione di doppio scambio in cui ioni di sali solubili danno due o più sali poco solubili. Inoltre le miscele di sali poco solubili si possono formare se un sale viene a contatto con una soluzione che contiene ioni che possono dar luogo alla formazione di un sale pochissimo solubile in presenza degli ioni contenuti nella soluzione satura del primo sale.

I problemi relativi a miscele di sali poco solubili hanno un certo grado di difficoltà ma possono essere risolti seguendo una schema

Esercizi

1)       Si supponga di mescolare 25.0 mL di BaCl2  0.012 M con 50.0 mL di Ag2SO4 0.010 M. Calcolare la concentrazione finale degli ioni in soluzione. (Kps di AgCl = 1.7 ∙ 10-10 e Kps di BaSO4 = 1.5 ∙ 10-9)

Il metodo per risolvere una tale tipologia di problema è quello di costruire una tabella che mostra quali ioni sono implicati, quante moli sono disponibili, quale variazione si verifica durante la reazione, quante moli sono in eccesso  e quale è la concentrazione finale.

Calcoliamo innanzi tutto la moli di ciascuno ione:

moli di Ba2+ = 0.0250 L ∙ 0.012 M = 0.00030

poiché la dissoluzione del cloruro di bario è la seguente: BaCl2 = Ba2+ + 2 Cl le moli di Cl saranno il doppio di quelle di Ba2+ ovvero 0.00030 ∙ 2 = 0.00060

moli di Ag2SO4 = 0.0500 L ∙ 0.010 M = 0.00050

poiché la dissoluzione di Ag2SO4 dà 2 Ag+ + 2 SO42- le moli di Ag+ sono pari a 0.00050 ∙ 2 = 0.0010  mentre quelle di SO42- sono 0.00050

La tabella che deve essere costruita è del tipo:

(1) (2) (3) (4) (5)
Ione Moli disponibili Variazione Moli in eccesso Concentrazione

 

Al momento con i dati ricavati siamo in grado di riempire solo la prima e la seconda colonna.

(1) (2) (3) (4) (5)
Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Ba2+ 0.00030
Cl 0.00060
Ag+ 0.0010
Cl 0.00050

 

Per quanto attiene la colonna 3 dobbiamo sapere quante moli di ciascuna specie vengono usate durante la reazione.

Le reazioni che possono avvenire sono le seguenti:

Ag+(aq) + Cl(aq) → AgCl(s)

Ba2+(aq) + SO42-(aq) → BaSO4(s)

Consideriamo tali reazioni indipendentemente l’una dall’altra. Per quanto attiene la precipitazione di AgCl sono richieste quantità equimolari di ioni, ma si nota nella seconda colonna che sono disponibili 0.00060 moli di Cl e 0.0010 moli di Ag+ . Assumiamo in prima analisi che tutto lo ione Cl precipiti e quindi le moli di Ag+ richieste per la precipitazione siano 0.00060 quindi le moli in eccesso di Ag+ sono 0.0010 – 0.00060 = 0.00040 (valore che va inserito nella colonna 4). Avendo assunto che tutto lo ione Cl è precipitato alla fine le moli di Cl saranno approssimativamente pari a zero.

Analogamente per la precipitazione del solfato di bario possiamo assumere che tutto lo ione Ba2+ precipiti e rimangano in eccesso 0.00050 – 0.00030 = 0.00020 moli di SO42-. Iniziamo a completare così la tabella:

(1) (2) (3) (4) (5)
Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Ba2+ 0.00030 – 0.00030 ~ 0
Cl 0.00060 – 0.00060 ~ 0
Ag+ 0.0010 – 0.00060 0.0004
SO42- 0.00050 – 0.00030 0.00020

 

Per completare la tabella occorrono ora le concentrazioni: il volume totale della soluzione è pari a 25.0 + 50.0 = 75.0 mL = 0.075 L

Le concentrazioni dello ione Ag+ e SO42- corrispondono rispettivamente a:

[Ag+] = 0.0004/ 0.075 = 0.005 M (si noti che deve essere presente una sola cifra significativa)

[SO42-] = 0.00020/0.075 =0.0027 M

Possiamo quindi completare ulteriormente la tabella:

(1) (2) (3) (4) (5)
Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Ba2+ 0.00030 – 0.00030 ~ 0
Cl 0.00060 – 0.00060 ~ 0
Ag+ 0.0010 – 0.00060 0.0004 0.005 M
SO42- 0.00050 – 0.00030 0.00020 0.0027 M

Avendo assunto, in prima analisi la completa precipitazione degli ioni Ba2+ e Cl dobbiamo comunque calcolare ora le rispettive concentrazioni  sfruttando il Kps di BaSO4 e il Kps di AgCl fissando in 0.0027 la concentrazione dello ione solfato e in 0.005 la concentrazione dello ione argento.

A questo punto ci troviamo dinanzi a un problema di solubilità più semplice:

consideriamo l’equilibrio AgCl(s) ⇄Ag+(aq) + Cl(aq)

all’equilibrio [Ag+] = 0.005 + x
e [Cl] = x

sostituendo tali valori nell’espressione del Kps si ha:

1.7 ∙ 10-10 = (0.005+x) (x)

Trascurando il termine x additivo rispetto a 0.005 si ha:

x = [Cl] =  1.7 ∙ 10-10/ 0.005 = 3 x 10-8 M

analogamente consideriamo l’equilibrio BaSO4(s) ⇄ Ba2+(aq) + SO42-(aq)

all’equilibrio [SO42-] = 0.0027+x e [Ba2+] = x ; sostituendo tali valori nel Kps si ha:

1.5 ∙ 10-9 = (x) (0.0027+x)

Da cui x = [Ba2+] = 5.6 ∙ 10-7 M

Siamo quindi in grado di completare tutta la tabella indicando per ciascuno ione la rispettiva concentrazione all’equilibrio:

(1) (2) (3) (4) (5)
Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Ba2+ 0.00030 – 0.00030 ~ 0 5.6 ∙ 10-7 M
Cl 0.00060 – 0.00060 ~ 0 3 ∙ 10-8 M
Ag+ 0.0010 – 0.00060 0.0004 0.005 M
SO42- 0.00050 – 0.00030 0.00020 0.0027 M

 

2)     Calcolare le concentrazioni finali degli ioni presenti in una soluzione ottenuta mescolando 1.50 ∙ 10-2 moli di Sr(NO3)2 e 3.0 · 10-3 moli di NaF in sufficiente acqua in modo che il volume finale sia pari a 0.200 L. ( Kps SrF2 = 7.9 · 10-10)

Iniziamo a scrivere le tabella con i dati fornitici:

(1) (2) (3) (4) (5)
Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Sr2+ 0.0150
NO3 0.0300
Na+ 0.0030
F 0.0030

 

La reazione di precipitazione di SrF2 è limitata da Finfatti, ammettendo la totale precipitazione degli ioni fluoruro sono richieste 0.0030/2 = 0.0015 moli di Sr2+. Risulteranno così in eccesso 0.0150 – 0.0015 = 0.0135 moli di Sr2+. Le moli dello ione nitrato così come quelle dello ione sodio non subiranno variazioni in quanto non implicate in reazioni di precipitazione. Completiamo ulteriormente la tabella:

Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Sr2+ 0.0150 – 0.0015 0.0135
NO3 0.0300 nessuna 0.0300
Na+ 0.0030 nessuna 0.0030
F 0.0030 – 0.0030 ~ 0

La concentrazione dello ione Sr2+ è pari a 0.0135/ 0.200 L = 0.0675 M

Consideriamo l’equilibrio:

SrF2(s)  ⇄ Sr2+(aq)  + 2 F(aq)

Ksp = 7.9 ∙ 10-10 = (0.675) [F]2

Da cui [F] = 1.1 ∙ 10-4 M

La tabella può essere così completata:

Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Sr2+ 0.0150 – 0.0015 0.0135 0.0675 M
NO3 0.0300 nessuna 0.0300 0.150 M
Na+ 0.0030 nessuna 0.0030 0.015 M
F 0.0030 – 0.0030 ~ 0  1.1 x 10-4 M

 

3)     Una soluzione è ottenuta mescolando 0.10 L di NaCl 0.12 M, 0.20 L di NaBr 0.14 M e 0.30 L di AgNO3 0.10 M. calcolare le concentrazioni degli ioni in soluzione. ( Kps AgCl = 1.7 ∙ 10-10; Kps AgBr = 5.0 ∙ 10-13)

Calcoliamo le moli di ciascuno ione:

moli di Ag+ = moli NO3 = 0.30 L ∙ 0.10 M = 0.030

Le moli di  Na+ cono pari a quelle di i Cl = 0.10 L ∙ 0.12 M = 0.012

moli di Na+ = moli di Br = 0.20 L ∙ 0.14 M = 0.028

le moli totali di Na+ sono 0.012 + 0.028=  0.040

iniziamo a costruire la tabella:

Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Ag+ 0.030
NO3 0.030
Na+ 0.040
Br 0.028
Cl 0.012

 

Sia lo ione nitrato che lo ione sodio non danno luogo a reazioni di precipitazione per cui il numero di moli rimane invariato. Lo ione argento, invece è coinvolto in due equilibri e, di conseguenza, stante il fatto che il Kps di AgBr è più piccolo rispetto a quello di AgCl, il bromuro di argento precipiterà per primo.

Ipotizzando che tutto lo ione Br precipiti sotto forma di AgBr si ha: 0.030 moli di Ag+ + 0.028 moli di Br danno 0.028 moli di AgBr e 0.030 – 0.028 = 0.002 moli di Ag+ si troveranno in eccesso.

A questo punto le 0.002 moli di Ag+ in eccesso reagiranno con Cl per dare 0.002 moli di AgCl risultando un eccesso di ioni Cl pari a 0.012 – 0.002 = 0.010.

Continuiamo a completare la tabella:

Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Ag+ 0.030 – 0.030 ~ 0
NO3 0.030 nessuna 0.030
Na+ 0.040 nessuna 0.040
Br 0.028 – 0.028 ~ 0
Cl 0.012 0.002 0.010

 

Il volume totale della soluzione è 0.60 L per cui la concentrazione di Cl vale 0.010/0.60= 0.017 M

Possiamo ora calcolare la concentrazione di Ag+ dal Kps:

[Ag+] = Kps/ [Cl] = 1.7 ∙ 10-10/ 0.017 = 1.0 ∙ 10-8 M

Conoscendo la concentrazione di Ag+ possiamo conoscere quella di Br dal Kps:

[Br] = 5.0 ∙ 10-13/ 1.0 ∙ 10-8 M

La tabella è così completata:

Ione Moli disponibili Variazione Moli in eccesso Concentrazione
Ag+ 0.030 – 0.030 ~ 0 1.0 ∙ 10-8 M
NO3 0.030 nessuna 0.030 0.050 M
Na+ 0.040 nessuna 0.040 0.067 M
Br 0.028 – 0.028 ~ 0 5.0 ∙ 10-5 M
Cl 0.012 0.002 0.010 0.017 M

 

Se vuoi inviare un esercizio clicca QUI

ARGOMENTI

GLI ULTIMI ARGOMENTI

TI POTREBBE INTERESSARE

Resa percentuale in una reazione. Esercizi svolti e commentati

La resa percentuale di una reazione costituisce un modo per valutare l'economicità di una reazione industriale che può essere accantonata se è bassa. Si possono...

Bilanciamento redox in ambiente basico: esercizi svolti

Il bilanciamento di una reazione redox in ambiente basico  può avvenire con  il metodo delle semireazioni. Nel bilanciamento vanno eliminati di eventuali ioni spettatori...

Temperature di ebollizione di composti organici

Le temperature di ebollizione dei composti organici forniscono informazioni relative alle loro proprietà fisiche e alle caratteristiche della loro struttura e costituiscono una delle...